Oxidation Reactions of Alkenes and Alkynes

KotaFactory.com

Table of Contents

1. Introduction to Oxidation Reactions

Oxidation reactions of alkenes and alkynes involve the addition of oxygen atoms or the removal of hydrogen atoms. These reactions are fundamental in organic chemistry and have significant synthetic applications.

Definition: Oxidation in organic chemistry typically involves:

Types of Oxidation Reactions

Type Substrate Product Common Reagents
Mild Oxidation Alkenes Diols, Epoxides OsO₄, mCPBA
Strong Oxidation Alkenes Ketones, Carboxylic acids KMnO₄, K₂Cr₂O₇
Ozonolysis Alkenes/Alkynes Aldehydes, Ketones O₃, Zn/CH₃COOH

2. Oxidation of Alkenes

2.1 Combustion (Complete Oxidation)

General Reaction:
CnH2n + (3n/2)O₂ [Heat] nCO₂ + nH₂O + Heat
Example 1: Ethene Combustion
CH₂=CH₂ + 3O₂ [Heat] 2CO₂ + 2H₂O + 1411 kJ/mol

Example 2: Propene Combustion
CH₃CH=CH₂ + (9/2)O₂ [Heat] 3CO₂ + 3H₂O

2.2 Oxidation with Potassium Permanganate (KMnO₄)

2.2.1 Cold, Dilute KMnO₄ (Baeyer's Test)

Reaction:
R-CH=CH-R' + KMnO₄ + H₂O [Cold, dilute] R-CH(OH)-CH(OH)-R' + MnO₂ + KOH
Example: Ethene with cold KMnO₄
3CH₂=CH₂ + 2KMnO₄ + 4H₂O [0°C] 3CH₂(OH)-CH₂(OH) + 2MnO₂ + 2KOH
Product: Ethylene glycol (1,2-ethanediol)

2.2.2 Hot, Concentrated KMnO₄ (Oxidative Cleavage)

Mechanism: The reaction proceeds through formation of diol intermediate, followed by cleavage of C-C bond.
Example 1: But-2-ene oxidation
CH₃CH=CHCH₃ + 4KMnO₄ + 6H₂SO₄ [Heat] 2CH₃COOH + 4MnSO₄ + 2K₂SO₄ + 6H₂O
Product: Acetic acid

Example 2: Propene oxidation
CH₃CH=CH₂ + 2KMnO₄ + 3H₂SO₄ [Heat] CH₃COOH + CO₂ + 2MnSO₄ + K₂SO₄ + 4H₂O

2.3 Oxidation with Potassium Dichromate (K₂Cr₂O₇)

General Reaction:
3R-CH=CH-R' + 2K₂Cr₂O₇ + 8H₂SO₄ [Heat] 3R-COOH + 3R'-COOH + 2Cr₂(SO₄)₃ + 2K₂SO₄ + 8H₂O
Example: Cyclohexene oxidation
3C₆H₁₀ + 8K₂Cr₂O₇ + 32H₂SO₄ [Heat] 3HOOC-(CH₂)₄-COOH + 8Cr₂(SO₄)₃ + 8K₂SO₄ + 32H₂O
Product: Adipic acid

3. Ozonolysis

Ozonolysis is the cleavage of alkenes and alkynes using ozone (O₃), followed by reduction to produce carbonyl compounds.

3.1 Ozonolysis of Alkenes

3.1.1 Mechanism

Step 1: Formation of Molozonide (1,2,3-trioxolane)
R₂C=CR₂ + O₃ R₂C-O-O-O-CR₂ (Molozonide)

Step 2: Rearrangement to Ozonide (1,2,4-trioxolane)
Molozonide R₂C-O-CR₂ (with O-O bridge)

Step 3: Reduction
Ozonide + Zn/CH₃COOH R₂C=O + R₂C=O

3.1.2 Reductive Workup

With Zinc/Acetic acid:
R₂C=CR₂ + O₃ [Zn/CH₃COOH] R₂C=O + R₂C=O

3.1.3 Oxidative Workup

With Hydrogen Peroxide:
R₂C=CHR + O₃ [H₂O₂] R₂C=O + RCOOH
Example 1: But-2-ene ozonolysis
CH₃CH=CHCH₃ + O₃ [Zn/CH₃COOH] 2CH₃CHO
Product: Acetaldehyde

Example 2: 2-Methylpropene ozonolysis
(CH₃)₂C=CH₂ + O₃ [Zn/CH₃COOH] (CH₃)₂C=O + CH₂O
Products: Acetone + Formaldehyde

Example 3: Styrene ozonolysis (Oxidative workup)
C₆H₅CH=CH₂ + O₃ [H₂O₂] C₆H₅CHO + HCOOH
Products: Benzaldehyde + Formic acid

3.2 Ozonolysis of Alkynes

General Reaction:
R-C≡C-R' + 2O₃ [H₂O] RCOOH + R'COOH
Example 1: But-2-yne ozonolysis
CH₃C≡CCH₃ + 2O₃ [H₂O] 2CH₃COOH
Product: Acetic acid

Example 2: Phenylacetylene ozonolysis
C₆H₅C≡CH + 2O₃ [H₂O] C₆H₅COOH + HCOOH
Products: Benzoic acid + Formic acid

4. Dihydroxylation

Dihydroxylation is the addition of two hydroxyl groups across a double bond to form vicinal diols (glycols).

4.1 Syn-Dihydroxylation with Osmium Tetroxide (OsO₄)

4.1.1 Mechanism

Step 1: Formation of Cyclic Osmate Ester
R₂C=CR₂ + OsO₄ Cyclic Osmate Ester

Step 2: Hydrolysis
Osmate Ester + H₂O R₂C(OH)-C(OH)R₂ + OsO₂(OH)₂
Catalytic Process (Upjohn Process):
R₂C=CR₂ + OsO₄ (cat.) + NMO + H₂O [syn addition] R₂C(OH)-C(OH)R₂ + NMO
NMO = N-Methylmorpholine N-oxide
Example 1: Cyclohexene dihydroxylation
C₆H₁₀ + OsO₄ + NMO + H₂O [syn] cis-1,2-cyclohexanediol

Example 2: But-2-ene dihydroxylation
CH₃CH=CHCH₃ + OsO₄ + H₂O₂ [syn] CH₃CH(OH)CH(OH)CH₃
Product: 2,3-butanediol

4.2 Anti-Dihydroxylation

4.2.1 Via Epoxide Formation and Ring Opening

Step 1: Epoxidation
R₂C=CR₂ + mCPBA Epoxide

Step 2: Acid-catalyzed ring opening
Epoxide + H₂O/H⁺ [anti addition] R₂C(OH)-C(OH)R₂
Example: Cyclohexene anti-dihydroxylation
Step 1: C₆H₁₀ + mCPBA Cyclohexene oxide
Step 2: Cyclohexene oxide + H₂O/H⁺ [anti] trans-1,2-cyclohexanediol

5. Epoxidation

Epoxidation is the formation of three-membered cyclic ethers (oxiranes) from alkenes through oxidation.

5.1 Epoxidation with Peroxyacids

5.1.1 Mechanism

Concerted Mechanism:
The peroxyacid transfers oxygen to the alkene in a single step through a cyclic transition state.

R₂C=CR₂ + R'COOOH R₂C-CR₂ (with O bridge) + R'COOH

5.1.2 Common Peroxyacids

Peroxyacid Abbreviation Structure Notes
meta-Chloroperoxybenzoic acid mCPBA m-ClC₆H₄COOOH Most common, stable
Peroxyacetic acid CH₃COOOH CH₃COOOH Less stable
Peroxyformic acid HCOOOH HCOOOH Very reactive
Example 1: Ethene epoxidation
CH₂=CH₂ + mCPBA [CH₂Cl₂] CH₂-CH₂ (with O bridge) + m-ClC₆H₄COOH
Product: Ethylene oxide (oxirane)

Example 2: Cyclohexene epoxidation
C₆H₁₀ + CH₃COOOH [CHCl₃] Cyclohexene oxide + CH₃COOH

Example 3: Styrene epoxidation
C₆H₅CH=CH₂ + mCPBA [CH₂Cl₂, 0°C] C₆H₅CH-CH₂ (with O bridge)
Product: Styrene oxide

5.2 Asymmetric Epoxidation (Sharpless Epoxidation)

Sharpless Asymmetric Epoxidation:
Allylic alcohol + tBuOOH + Ti(OiPr)₄ + (+)-DET [CH₂Cl₂, -20°C] Epoxy alcohol (high ee)
DET = Diethyl tartrate, ee = enantiomeric excess

5.3 Industrial Epoxidation

Silver-Catalyzed Ethylene Epoxidation:
CH₂=CH₂ + ½O₂ [Ag catalyst, 250°C] CH₂-CH₂ (with O bridge)

6. Oxidation of Alkynes

6.1 Oxidative Cleavage with KMnO₄

General Reaction:
R-C≡C-R' + 4KMnO₄ + 6H₂SO₄ [Heat] RCOOH + R'COOH + 4MnSO₄ + 2K₂SO₄ + 6H₂O
Example 1: Hex-3-yne oxidation
CH₃CH₂C≡CCH₂CH₃ + 4KMnO₄ + 6H₂SO₄ [Heat] 2CH₃CH₂COOH + 4MnSO₄ + 2K₂SO₄ + 6H₂O
Product: Propionic acid

Example 2: Terminal alkyne oxidation
CH₃CH₂C≡CH + 2KMnO₄ + 3H₂SO₄ [Heat] CH₃CH₂COOH + CO₂ + 2MnSO₄ + K₂SO₄ + 3H₂O
Products: Propionic acid + CO₂

6.2 Oxidation with K₂Cr₂O₇

Reaction:
3R-C≡C-R' + 4K₂Cr₂O₇ + 16H₂SO₄ [Heat] 3RCOOH + 3R'COOH + 4Cr₂(SO₄)₃ + 4K₂SO₄ + 16H₂O

6.3 Partial Oxidation - Formation of α-Diketones

With mild oxidizing agents:
R-C≡C-R' + KMnO₄ [Cold, dilute] R-CO-CO-R'
α-Diketone formation
Example: Diphenylacetylene oxidation
C₆H₅C≡CC₆H₅ + KMnO₄ [Cold, dilute] C₆H₅COCOC₆H₅
Product: Benzil (diphenyl α-diketone)

6.4 Ruthenium-Catalyzed Oxidation

Selective oxidation to ketones:
R-C≡C-H + H₂O [RuCl₃/NaIO₄] R-CO-CH₃
Example: 1-Hexyne to 2-hexanone
CH₃(CH₂)₃C≡CH + H₂O [RuCl₃/NaIO₄, CH₃CN/H₂O] CH₃(CH₂)₃COCH₃
Product: 2-Hexanone

7. Comparison and Summary

7.1 Oxidation Methods Comparison

Reagent Conditions Alkene Products Alkyne Products Selectivity
KMnO₄ (cold, dilute) 0°C, pH ~8 Vicinal diols α-Diketones Syn addition
KMnO₄ (hot, conc.) Heat, acidic Carboxylic acids/ketones Carboxylic acids Oxidative cleavage
K₂Cr₂O₇ Heat, H₂SO₄ Carboxylic acids/ketones Carboxylic acids Oxidative cleavage
O₃/Zn -78°C, then Zn/AcOH Aldehydes/ketones Carboxylic acids Reductive workup
O₃/H₂O₂ -78°C, then H₂O₂ Ketones/carboxylic acids Carboxylic acids Oxidative workup
OsO₄ Room temp, with co-oxidant Vicinal diols Not applicable Syn dihydroxylation
mCPBA Room temp, CH₂Cl₂ Epoxides Not applicable Stereospecific

7.2 Product Prediction Rules

For Alkenes:
For Alkynes:

7.3 Synthetic Applications

Industrial Application 1: Ethylene Glycol Production
CH₂=CH₂ [Ag, O₂] CH₂-CH₂-O [H₂O, H⁺] HOCH₂CH₂OH
Used in antifreeze, polyester production

Industrial Application 2: Adipic Acid Synthesis
Cyclohexene [KMnO₄, heat] HOOC(CH₂)₄COOH
Used in nylon-6,6 production

Pharmaceutical Application: Epoxide Intermediates
Alkene [mCPBA] Epoxide [Nucleophile] Drug intermediates

7.4 Environmental Considerations

Green Chemistry Aspects:

7.5 Troubleshooting Common Issues

Problem Cause Solution
Low yield in epoxidation Competitive ring opening Use dry solvents, low temperature
Over-oxidation with KMnO₄ Too concentrated/hot Use cold, dilute conditions
Ozonide explosion Concentration, heating Keep cold, immediate workup
Poor stereoselectivity Wrong reagent choice Choose syn (OsO₄) vs anti (mCPBA→hydrolysis)

7.6 Practice Problems

Problem 1: Predict the products of the following reactions:

a) CH₃CH=CHCH₃ + KMnO₄/OH⁻ (cold) → ?
b) (CH₃)₂C=CH₂ + O₃, then Zn/AcOH → ?
c) C₆H₅C≡CH + KMnO₄/H₂SO₄ (hot) → ?

Solutions:
a) CH₃CH(OH)CH(OH)CH₃ (2,3-butanediol)
b) (CH₃)₂C=O + CH₂=O (acetone + formaldehyde)
c) C₆H₅COOH + CO₂ (benzoic acid + carbon dioxide)

Problem 2: Design a synthesis:
Convert cyclohexene to trans-1,2-cyclohexanediol

Solution:
Step 1: Cyclohexene + mCPBACyclohexene oxide
Step 2: Cyclohexene oxide + H₂O/H⁺trans-1,2-cyclohexanediol
Key Points to Remember:

8. Summary and Conclusion

Oxidation reactions of alkenes and alkynes represent fundamental transformations in organic chemistry, providing access to a wide variety of functional groups including diols, epoxides, carbonyl compounds, and carboxylic acids. The choice of oxidizing agent and reaction conditions determines both the product distribution and stereochemical outcome.

Strategic Importance:

Understanding these reactions is crucial for organic synthesis, pharmaceutical development, and industrial chemical production. The mechanisms and selectivity patterns provide the foundation for rational synthetic design and problem-solving in organic chemistry.

🎓 Complete Notes Available at KotaFactory.com 🎓